
Globally optimal on-line learning rules for multi-layer neural networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 L771

(http://iopscience.iop.org/0305-4470/30/22/005)

Download details:

IP Address: 171.66.16.110

The article was downloaded on 02/06/2010 at 06:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) L771–L776. Printed in the UK PII: S0305-4470(97)87447-1

LETTER TO THE EDITOR

Globally optimal on-line learning rules for multi-layer
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Abstract. We present a method for determining the globally optimal on-line learning rule
for a soft committee machine under a statistical mechanics framework. This rule maximizes
the total reduction in generalization error over the whole learning process. A simple example
demonstrates that the locally optimal rule, which maximizes the rate of decrease in generalization
error, may perform poorly in comparison.

Neural networks are the subject of much current research regarding their ability to learn
both continuous and discrete mappings from examples (see, for example, [1]). In particular,
we consider a learning scenario in which a feed-forward neural network model (the student)
emulates an unknown mapping (the teacher), given a set of training examples produced
by the teacher. The performance of the student network is typically measured by its
generalization error, which is the expected error on an unseen example. The aim of training
is to minimize the generalization error by adapting the student network’s parameters.

One of the most common forms of training is on-line learning, in which training
examples (patterns) are presented sequentially and independently at each learning step. For
example, a frequently used on-line method for networks with continuous nodes is stochastic
gradient descent, since a differentiable error measure can be defined in this case. The
stochasticity is due to the error gradient being determined according to only the latest,
randomly selected pattern. This is in contrast to batch learning, where all patterns in the
training set are available for learning, leading to a deterministic algorithm. On-line methods
can be beneficial in terms of both storage and computation time for large systems.

Many modifications to the basic gradient descent algorithm have been suggested in the
literature. At late times one can use on-line estimates of second-order information (the
Hessian of the error or its eigenvalues) to ensure asymptotically optimal performance [2, 3].
A number of heuristics also exist which attempt to improve performance during the transient
phase of learning (for a review, see [1]). However, these heuristics all require the careful
setting of parameters which can be critical to their performance. Moreover, it would be
desirable to have principled and theoretically well motivated algorithms which do not rely
on heuristic arguments.

Statistical mechanics allows a compact description for a number of on-line learning
scenarios in the limit of large input dimension (see, for example, [4–6]), which we have
recently employed to propose a method for determining globally optimal learning rates for
on-line gradient descent [7]. This method will be generalized here to determine globally
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optimal on-line learning rules for both discrete and continuous machines. That is, rules
which provide the maximum reduction in generalization error over the whole learning
process. This provides a natural extension to work on locally optimal learning rules [8, 9],
where only the rate of change in generalization error is optimized. In fact, for simple systems
we sometimes find that the locally optimal rule is also globally optimal. However, global
optimization seems to be rather important in more complex systems which are characterized
by more degrees of freedom and often require broken permutation symmetries to learn
perfectly.

In this letter we introduce our formalism and derive a general result for the optimal
on-line learning rule given a soft committee machine student and a teacher of the same
architecture (but possibly of a different complexity). We then consider two simple learning
scenarios for which the optimal rule can be determined in closed form.

It should be pointed out that the optimal rules derived here will often require knowledge
of macroscopic properties related to the teacher’s structure which would not be known in
general. In this sense these rules do not provide practical algorithms as they stand, although
some of the required macroscopic properties may be evaluated or estimated on the basis of
data gathered as the learning progresses. In any case, these rules provide an upper bound
on the performance one could expect from a real algorithm and may be instrumental in
designing practical training algorithms.

We will consider a general two-layer soft committee machine†. The teacher mapping
is from anN -dimensional input spaceξ ∈ <N onto a scalarζ ∈ <, which the student
models through a mapσ(J , ξ) =∑K

i=1 g(Ji · ξ), whereg(x) is the activation function for
the hidden layer,J ≡ {Ji}16i6K is the set of input-to-hidden adaptive weights for theK
hidden nodes and the hidden-to-output weights are set to 1. The activation of hidden node
i under presentation of the input patternξµ is denotedxµi = Ji · ξµ.

Training examples are of the form(ξµ, ζµ) whereµ = 1, 2, . . . , P . The components
of the independently drawn input vectorsξµ are uncorrelated random variables with zero
mean and unit variance. The corresponding outputζµ is given by a deterministic teacher
of similar configuration to the student except for a possible difference in the numberM of
hidden units and is of the formζµ = ∑M

n=1 g(Bn · ξµ), whereB ≡ {Bn}16n6M is the set
of input-to-hidden adaptive weights. The activation of hidden noden under presentation
of the input patternξµ is denotedyµn = Bn · ξµ. We will use indicesi, j, k, l to refer to
units in the student network andn,m for units in the teacher network. We will use the
quadratic deviationε(J , ξ) ≡ 1

2[σ(J , ξ)−ζ ]2 as a measure of disagreement between teacher
and student. The most basic learning rule is to perform gradient descent on this quantity.
Performance on a typical input defines the generalization errorεg(J) ≡ 〈ε(J , ξ)〉{ξ} through
an average over all possible input vectorsξ.

The general form of learning rule we consider is

J
µ+1
i = Jµi +

1

N
F
µ

i (x
µ, ζµ)ξµ (1)

whereF ≡ {Fi} depends only on the student activations and the teacher’s output, and not
on the teacher activations which are unobservable. Note that gradient descent on the error
takes this general form, as does Hebbian learning and other training algorithms commonly
used in discrete machines. The optimalF can also depend on the self-averaging statistics
which describe the dynamics, since we know how they evolve in time. Some of these would
not be available in a practical application, although for some simple cases the unobservable

† The general result presented here also applies to the discrete committee machine, but we will limit our discussion
to the soft committee machine.
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statistics can be deduced from observable quantities [6, 8]. This is, therefore, an idealization
rather than a practical algorithm and provides a bound on the performance of a real algorithm.

The activations are distributed according to a multi-variate Gaussian with covariances:
〈xixk〉 = Ji · Jk ≡ Qik, 〈xiyn〉 = Ji ·Bn ≡ Rin, and〈ynym〉 = Bn ·Bm ≡ Tnm, measuring
overlaps between student and teacher vectors. Angled brackets denote averages over input
vectors. The covariance matrix completely describes the macroscopic state of the system
and in the limit of largeN we can write equations of motion for each macroscopic (theTnm
are fixed and define the teacher):

dRin
dα
= 〈Fiyn〉 dQik

dα
= 〈Fixk + Fkxi + FiFk〉 (2)

where angled brackets now denote averages over activations, replacing the averages over
inputs, andα = µ/N plays the role of a continuous time variable.

Averaging over inputs one obtains an expression for the generalization error which
depends exclusively on the overlapsR, Q andT . Using the dependence of their dynamics
(equation (2)) onF one can easily calculate the locally optimal learning rule [8] by taking
the functional derivative of dεg(F )/dα to zero, looking for the rule that will maximize
the reduction in generalization error at each time step. This approach has been shown to
be successful in some training scenarios but is likely to be suboptimal when the learning
process is characterized by several phases of different nature (for example, in multi-layer
networks).

The globally optimal learning rule is found by maximizing the total reduction in
generalization error over a fixed time window. Consider the change in generalization error
over the interval [α0, α1], which can be written as an integral:

1εg(F ) =
∫ α1

α0

dεg
dα

dα =
∫ α1

α0

L(F , α)dα. (3)

This is a functional of the learning rule which we minimize by a variational approach.
First we can rewrite the integrand by expanding in terms of the equations of motion,

each constrained by a Lagrange multiplier,

L(F , α) =
∑
in

∂εg

∂Rin

dRin
dα
+
∑
ik

∂εg

∂Qik

dQik

dα
−
∑
in

λin

(
dRin
dα
− 〈Fiyn〉

)
−
∑
ik

νik

(
dQik

dα
− 〈Fixk + Fkxi + FiFk〉

)
. (4)

The expression forL still involves two multidimensional integrations overx and y, so
taking variations inF , which may depend onx andζ but not ony, we find an expression
for the optimal rule in terms of the Lagrange multipliers:

F = −x− 1
2ν
−1λy (5)

whereν = [νij ] andλ = [λin]. We definey to be the teacher’s expected activation given
the teacher’s output and the student activations, which are observable quantities:

y =
∫

dy y p(y|x, ζ ). (6)

Now taking variations with respect to the integral in equation (3) we find a set of differential
equations for the Lagrange multipliers

dλkm
dα
= −

∑
in

λin
∂〈Fiyn〉
∂Rkm

−
∑
ij

νij
∂〈Fixj + Fjxi + FiFj 〉

∂Rkm
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dνkl
dα
= −

∑
in

λin
∂〈Fiyn〉
∂Qkl

−
∑
ij

νij
∂〈Fixj + Fjxi + FiFj 〉

∂Qkl

(7)

whereF takes its optimal value defined in equation (5). The boundary conditions for the
Lagrange multipliers are

λin(α1) = ∂εg

∂Rin

∣∣∣∣
α1

and νik(α1) = ∂εg

∂Qik

∣∣∣∣
α1

(8)

which are found by minimizing the rate of change in generalization error atα1, so that the
globally optimal solution reduces to the locally optimal solution at this point, reflecting the
fact that changes atα1 have no effect at other times.

If the above expressions do not yield an explicit formula for the optimal rule then
the rule can be determined iteratively by gradient descent on the functional1εg(F ). To
determine all the quantities necessary for this procedure requires that we first integrate
the equations for the overlaps forward and then integrate the equations for the Lagrange
multipliers backwards from the boundary conditions in equation (8).

In order to apply the above result we must be able to carry out the average in equation (6)
and then in (7). These averages are also required to determine the locally optimal learning
rule, so that the present method can be extended to any of the problems which have already
been considered under the criteria of local optimality. Here we present two examples
where the averages can be computed in closed form. The first problem we consider is a
Boolean perceptron learning a linearly separable task and in this case we retrieve the locally
optimal rule [8]. The second problem is an over-realizable task, in which a soft committee
machine student learns from a perceptron with a sigmoidal response. In this example the
globally optimal rule significantly outperforms the locally optimal rule and exhibits a faster
asymptotic decay.

Boolean perceptron learning a linearly separable task.In this example we choose the
activation functiong(x) = sgn(x) and both teacher and student have a single hidden node
(M = K = 1). The locally optimal rule was determined by Kinouchi and Caticha [8] and
they supply the expected teacher field given the teacher’s outputζ = sgn(y) and the student
field x (we take the teacher lengthT = 1 without loss of generality),

y = R

Q

(
x + ζ

√
2/π exp(−γ 2x2/2)

γ erfc(−ζxγ /√2)

)
where γ = R√

Q2− R2Q
. (9)

Substituting this expression into the Lagrange multiplier dynamics in equation (7) shows
that the ratio ofλ to ν is given byλ/ν = −2Q/R, and equation (5) then returns the locally
optimal value for the optimal rule:

F = ζ
√

2/π exp(−γ 2x2/2)

γ erfc(−ζxγ /√2)
. (10)

This rule leads to modulated Hebbian learning and the resulting dynamics are discussed
in [8]. We also find that the locally optimal rule is retrieved when the teacher is corrupted
by output or weight noise [6].

Soft committee machine learning an analogue perceptron.In this example the teacher is
an analogue perceptron (M = 1) while the student is a soft committee machine with an
arbitrary number (K) of hidden nodes. We choose the activation functiong(x) = erf(x/

√
2)

for both the student and teacher since this allows the generalization error to be determined
in closed form [4]. This is an example of an over-realizable task, since the student has
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greater complexity than is required to learn the teacher’s mapping. The locally optimal rule
for this scenario has recently been determined [9].

Since the teacher is invertible, the expected teacher activationy is trivially equal to the
true activationy. This leads to a particularly simple form for the dynamics (then suffix is
dropped since there is only one teacher node),

dRi
dα
= biT − Ri dQik

dα
= bibkT −Qik (11)

where we have definedbi = −
∑
j ν
−1
ij λj /2 and the optimal rule is given byFi = biy − xi .

The Lagrange multiplier dynamics in equations (7) then show that the relative ratio of each
Lagrange multiplier remains fixed over time, so thatbi is determined by its boundary value
(see equation (8)). It is then straightforward to find solutions for long times, since thebi
approach limiting values for very small generalization error (there are a number of possible
solutions because of symmetries in the problem but any such solution will have the same
performance for long times). For example, one possible solution is to haveb1 = 1 and
bi = 0 for all i 6= 1, which leads to an exponential decay of weights associated with all but
a single node. This shows how optimal performance is achieved when the complexity of
the student matches that of the teacher.

Figure 1. A three-node soft committee machine student learns from an analogue perceptron
teacher. The figure on the left shows a log plot of the generalization error for the globally
optimal (full line) and locally optimal (dashed line) algorithms. The figure on the right shows the
student–teacher overlaps for the locally optimal rule, which exhibit a symmetric plateau before
specialization occurs (afterα = S the dashed and solid lines lie on top of one another). The
overlaps where initialized randomly and uniformly withQii ∈ [0, 0.5] andRi,Qi 6=j ∈ [0, 10−6].

Figure 1 shows results for a three-node student learning an analogue perceptron. Clearly,
the locally optimal rule performs poorly in comparison to the globally optimal rule. In this
example the globally optimal rule arrived at was one in which two nodes became correlated
with the teacher while a third became anti-correlated, showing another possible variation on
the optimal rule (we determined this rule iteratively by gradient descent in order to justify
our general approach, although the observations above show how one can predict the final
result for long times). The locally optimal rule becomes caught in a symmetric plateau,
characterized by a lack of differentiation between student vectors associated with different
nodes, and also displays a slower asymptotic decay.
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To conclude, we have presented a method for determining the optimal on-line rule for
a soft committee machine under a statistical mechanics framework. We gave two simple
examples for which the rule could be determined in closed form, for one of which, an over-
realizable learning scenario, it was shown how the locally optimal rule performed poorly
in comparison to the globally optimal rule. It is expected that more involved systems will
show even greater difference in performance between local and global optimization and we
are currently applying the method to more general teacher mappings. The main technical
difficulty is in computing the expected teacher activation in equation (6) and this may require
the use of approximate methods in some cases.

It would be interesting to compare the training dynamics obtained by the globally optimal
rules to other approaches, heuristic and principled, aimed at incorporating information about
the curvature of the error surface into the parameter modification rule. In particular, we
would like to examine rules which are known to be optimalasymptotically[10]. Another
important issue is whether one can apply these results to facilitate the design of a practical
learning algorithm.

This work was supported by the EPSRC grant GR/L19232.
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